
Abstract

General Description The MAX4889B/MAX4889C high-speed passive switches route PCI Express ${ }^{\circledR}$ (PCle) data between two possible destinations in desktop or notebook PCs. The MAX4889B/MAX4889C are quad double-pole/doublethrow ($4 \times$ DPDT) switches ideal for switching four half lanes of PCle data between two destinations. The MAX4889B/MAX4889C feature a single digital control input (SEL) to switch signal paths. The MAX4889C is intended for use in systems (e.g., SAS) where both the input and output are capacitively coupled, and provides a $10 \mu \mathrm{~A}$ (typ) source current and a $60 \mathrm{k} \Omega$ (typ) internal biasing resistor to GND at the _OUT_ terminals. The MAX4889B/MAX4889C are fully specified to operate from a single +3.3 V (typ) power supply. Both devices are available in an industry-standard $3.5 \mathrm{~mm} \times$ $9.0 \mathrm{~mm}, 42-$ pin TQFN package. These devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range. Desktop PCs Notebook PCs Servers Video Graphics Cards—SLITIM (Scaled Link Interface) and CrossFire ${ }^{\text {TM }}$ PCI Express is a registered trademark of PCI-SIG Corp. SLI is a trademark of NVIDIA Corp. CrossFire is a trademark of ATI Technologies, Inc.

Desktop PCs Notebook PCs Servers Video Graphics Cards—SLITM (Scaled Link Interface) and CrossFire ${ }^{\text {TM }}$

PCI Express is a registered trademark of PCI-SIG Corp.

CrossFire is a trademark of ATI Technologies, Inc.

Features		
- Single +3.3V Power-Supply Voltage		
- Support PCle Gen I, Gen II Data Rates		
- Supports SAS I, SAS II, and SAS 6.0Gbps (MAX4889C)		
- Superior Return Loss Better than -14 dB at 2.8 GHz		
- Small $3.5 \mathrm{~mm} \times 9.0 \mathrm{~mm}$, 42-Pin TQFN Package - Industry-Standard Pinouts		
Ordering Information		
PART	PIN-PACKAGE	PKG CODE
MAX4889BETO+	42 TQFN-EP*	T423590M-1
MAX4889CETO+	42 TQFN-EP*	T423590M-1

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
+Denotes a lead-free package.
*EP = Exposed pad.

Typical Operating Circuit appears at end of data sheet.
Pin Configuration

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

2.5/5.0Gbps PCle Passive Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ for multilayer board: 42-Pin TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots . . .2857 \mathrm{~mW}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature ... $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Package Junction-to-Ambient Thermal Resistance (JJA) $^{\text {) (Note 2) }}$
$.28 .0^{\circ} \mathrm{C} / \mathrm{W}$
Package Junction-to-Case Thermal Resistance (θ_{JC}) (Note 2) $2.0^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Note 1: Signals on SEL, _IN_,_OUTA_,_OUTB_ exceeding VCC or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC PERFORMANCE						
Analog Signal Range			-0.3		$\begin{gathered} \text { VCC - } \\ 1.8 \end{gathered}$	V
On-Resistance	Ron	$\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{I}_{-} \mathrm{N}_{-}=15 \mathrm{~mA}, \mathrm{~V}_{\text {_OUTA }}$, V_OUTB_ = 0V, 1.2 V		6.4	8.4	Ω
On-Resistance Match Between Pairs of Same Channel	$\triangle \mathrm{RON}$	$\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \mathrm{N}_{-}=15 \mathrm{~mA}$, V_OUTA, V_OUTB_ = OV (Notes 4, 5)		0.1	0.5	Ω
On-Resistance Match Between Channels	$\Delta \mathrm{RON}$	$\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{I}} \mathrm{N}_{-}=15 \mathrm{~mA}$, V_OUTA, V_OUTB_ = OV (Notes 4, 5)		0.2		Ω
On-Resistance Flatness	RFLAT (ON)	$\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}, I_{-} \mathrm{N}_{-}=15 \mathrm{~mA}, \mathrm{~V}_{\text {_OUTA }}$, V_OUTB_ = 0V, 1.2V (Notes 5, 6)		0.3		Ω
OUTA or _OUTB_ Off-Leakage Current	I_OUTA_ (OFF), I_OUTB_ (OFF)	$\mathrm{V}_{C C}=+3.6 \mathrm{~V}, \mathrm{~V}_{-} \mathrm{IN}=0 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{-}$OUTA_ or V_OUTB_ = 1.2V, OV (MAX4889B)	-1		+1	$\mu \mathrm{A}$
IN On-Leakage Current	I_IN_ (ON)	$\mathrm{V}_{\mathrm{CC}}=+3.6 \mathrm{~V}, \mathrm{~V}_{-} \mathrm{IN}=0 \mathrm{~V}, 1.2 \mathrm{~V}, \mathrm{~V}_{-}$OUTA_ or V_OUTB_ = V_IN_ or unconnected (MAX4889B)	-1		+1	$\mu \mathrm{A}$
Output Short-Circuit Current		All other ports are unconnected (MAX4889C)	5		15	$\mu \mathrm{A}$
Output Open-Circuit Voltage		All other ports are unconnected (MAX4889C)	0.2	0.6	0.9	V

2.5/5.0Gbps PCle Passive Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
AC PERFORMANCE						
SEL-to-Switch Turn-On Time	ton_SEL	$Z_{S}=Z_{L}=50 \Omega$		80		ns
SEL-to-Switch Turn-Off Time	toff_SEL	$Z_{S}=Z_{L}=50 \Omega$, Figure 1		15		ns
Propagation Delay	tpD	$Z_{S}=Z_{L}=50 \Omega$, Figure 2		50		ps
Output Skew Between Pairs	tSKEW1	$Z_{S}=Z_{L}=50 \Omega$, Figure2		50		ps
Output Skew Between Same Pair	tSKEW2	$Z_{S}=Z_{L}=50 \Omega$, Figure 2		10		ps
Differential Return Loss (Note 5)	SDD11	$0 \mathrm{~Hz}<\mathrm{f} \leq 2.8 \mathrm{GHz}$	-14			dB
		$2.8 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$	-8			
		$\mathrm{f}>5.0 \mathrm{GHz}$	-3			
Differential Insertion Loss (Note 5)	SDD21	See Table 1				dB
Differential Crosstalk (Note 5)	SDDCTK	$0 \mathrm{~Hz}<\mathrm{f} \leq 2.5 \mathrm{GHz}$		-40		dB
		$2.5 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$		-30		
		$\mathrm{f}>5.0 \mathrm{GHz}$		-25		
Differential Off-Isolation (Note 5)	SDD21_OFF	$0 \mathrm{~Hz}<\mathrm{f} \leq 2.5 \mathrm{GHz}$		-15		dB
		$2.5 \mathrm{GHz}<\mathrm{f} \leq 5.0 \mathrm{GHz}$		-12		
		$\mathrm{f}>5.0 \mathrm{GHz}$		-12		
CONTROL INPUT (SEL)						
Input Logic High	V_{IH}		1.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$				0.6	V
Input Logic Hysteresis	V HYST			130		mV
POWER SUPPLY						
Power-Supply Range	VCC		3.0		3.6	V
VCc Supply Current	Icc	$V_{\text {SEL }}=0$ or $\mathrm{V}_{\text {CC }}$			1	mA

Note 3: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization and are not production tested.
Note 4: $\Delta \mathrm{RON}_{\mathrm{ON}}=$ RON (MAX) - RON (MIN).
Note 5: Guaranteed by design, not production tested.
Note 6: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

Table 1. Insertion Loss Mask

FREQUENCY RANGE (GHz)	MAXIMUM INSERTION LOSS (dB)
$0-2.5$	$\frac{14}{25} \times \mathrm{f}_{\mathrm{GHz}}+0.6$
$2.5-5$	$\frac{6}{5} \times \mathrm{f}_{\mathrm{GHz}}-1.0$
5 or greater	$\frac{8}{5} \times \mathrm{f}_{\mathrm{GHz}}-3.0$

2.5/5.0Gbps PCle Passive Switches

Figure 1. Switching Time

2.5/5.0Gbps PCle Passive Switches

МАХ4889B/МАХ4889С

Figure 2. Propagation Delay and Output Skew

2.5/5.0Gbps PCle Passive Switches

2.5/5.0Gbps PCle Passive Switches

Functional Diagram/Truth Table

2.5/5.0Gbps PCle Passive Switches

Pin Description

PIN		
MAX4889B/ MAX4889C	NAME	FUNCTION
1	AIN+	Analog Switch 1. Common Positive Terminal.
2	AIN-	Analog Switch 1. Common Negative Terminal.
3	AOUTB+	Analog Switch 1. Normally Open Positive Terminal.
4	AOUTB-	Analog Switch 1. Normally Open Negative Terminal.
5	$\mathrm{BIN}+$	Analog Switch 2. Common Positive Terminal.
6	BIN-	Analog Switch 2. Common Negative Terminal.
7	BOUTB+	Analog Switch 2. Normally Open Positive Terminal.
8	BOUTB-	Analog Switch 2. Normally Open Negative Terminal.
$\begin{gathered} 9,19,21,26,31, \\ 34,39,41 \end{gathered}$	Vcc	Positive Supply Voltage Input. Connect V_{Cc} to a 3.0 V to 3.6 V supply voltage. Bypass V_{Cc} to GND with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed as close as possible to the device. See the Board Layout section.
10	$\mathrm{ClN+}$	Analog Switch 3. Common Positive Terminal.
11	CIN-	Analog Switch 3. Common Negative Terminal.
12	COUTB+	Analog Switch 3. Normally Open Positive Terminal.
13	COUTB-	Analog Switch 3. Normally Open Negative Terminal.
14	DIN+	Analog Switch 4. Common Positive Terminal.
15	DIN-	Analog Switch 4. Common Negative Terminal.
16	DOUTB+	Analog Switch 4. Normally Open Positive Terminal.
17	DOUTB-	Analog Switch 4. Normally Open Negative Terminal.
$\begin{gathered} 18,20,22,25,29, \\ 35,38,40,42 \end{gathered}$	GND	Ground
23	DOUTA-	Analog Switch 4. Normally Closed Negative Terminal.
24	DOUTA+	Analog Switch 4. Normally Closed Positive Terminal.
27	COUTA-	Analog Switch 3. Normally Closed Negative Terminal.
28	COUTA+	Analog Switch 3. Normally Closed Positive Terminal.
30	SEL	Control Signal Input. SEL has a 70k (typ) pulldown resistor to GND.
32	BOUTA -	Analog Switch 2. Normally Closed Negative Terminal.
33	BOUTA+	Analog Switch 2. Normally Closed Positive Terminal.
36	AOUTA-	Analog Switch 1. Normally Closed Negative Terminal.
37	AOUTA+	Analog Switch 1. Normally Closed Positive Terminal.
-	EP	Exposed Pad. Connect EP to GND.

2.5/5.0Gbps PCIe Passive Switches

Detailed Description

The MAX4889B high-speed passive switch routes PCI Express (PCle) data or other high-speed signals with amplitude of $\leq 1.2 \mathrm{VP}$-P differential, and common-mode voltage close to OV between two possible destinations. The MAX4889B is ideal for routing PCle signals to change system configuration. For example, in a graphics application, four MAX4889B devices create two sets of eight lanes from a single 16-lane bus. The MAX4889C feature a $10 \mu \mathrm{~A}$ (typ) source current and a $60 \mathrm{k} \Omega$ (typ) internal biasing resistor to GND at the _OUT_ terminals. The MAX4889C is ideal for dual capacitively coupled applications such as SAS and SATA. The MAX4889B/ MAX4889C feature a single digital control input (SEL) to switch signal paths. SEL has a $70 \mathrm{k} \Omega$ (typ) pulldown resistor to GND.
The MAX4889B/MAX4889C are fully specified to operate from a single 3.0 V to 3.6 V power supply.

Digital Control Input (SEL) The MAX4889B/MAX4889C provide a single digital control input (SEL) to select the signal path between the _IN_ and _OUT_ channels. The truth tables for the MAX4889B/MAX4889C are illustrated in the Functional Diagram/Truth Table. SEL has a 70k Ω (typ) pulldown resistor to GND.

Analog Signal Levels

The MAX4889B/MAX4889C accept standard PCle signals to a maximum of (VCC -1.8 V). Signals on the _IN+ channels are routed to either the _OUTA+ or _OUTB+ channels. Signals on the _IN- channels are routed to either the _OUTA- or _OUTB- channels. The MAX4889B/MAX4889C are bidirectional switches, allowing _IN_ and _OUT_ to be used as either inputs or outputs.

Applications Information

PCIe Switching
The MAX4889B/MAX4889C primary applications are aimed at reallocating PCIe lanes (see the Typical Operating Circuit: Video Graphics Cards). For example, in graphics applications, several manufacturers have found that it is possible to improve performance by a factor of nearly two by splitting a single 16-lane PCle bus into two 8-lane buses. Two of the more prominent examples are SLI (Scaled Link Interface) and CrossFire. Four MAX4889Bs permit a computer motherboard to operate properly with a single 16-lane graphics card, which can later be upgraded to dual cards.

Board Layout
High-speed switches require proper layout and design procedures for optimum performance. Keep controlledimpedance PCB traces as short as possible or follow impedance layouts per the PCle specification. Ensure that power-supply bypass capacitors are placed as close as possible to the device. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes.

2.5/5.0Gbps PCle Passive Switches

2.5/5.0Gbps PCIe Passive Switches

Chip Information

PROCESS: CMOS Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
42 TQFN	T423590M-1	$\underline{\mathbf{2 1 - 0 1 8 1}}$

